1n1n1SolutionFrom the taylor series expansion we have 1n1 xn

(-1)^(n+1)/(n+1)

Solution

From the taylor series expansion we have:

(-1)^(n+1) xn/n = ln(1+x)

So we have:

n=1 (-1)^(n) xn/n = -ln(1+x)

or

n=0 (-1)^(n+1) xn+1/(n+1) = -ln(1+x)

Now put x = 1 :

n=0 (-1)^(n+1) * 1/(n+1) = -ln(1+1) = -ln(2)

 (-1)^(n+1)/(n+1)SolutionFrom the taylor series expansion we have: (-1)^(n+1) xn/n = ln(1+x) So we have: n=1 (-1)^(n) xn/n = -ln(1+x) or n=0 (-1)^(n+1) xn+1/(n+

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site