hint Use the Euclidean AlgorithmSolution1 3575119717 5735341
hint: Use the Euclidean Algorithm
Solution
1)
35=7*5,119=7*17
5*7=35=34+1=17*2+1
So, 5*7-17*2=1
So, 7(5*7-17*2)=7
35*7-119*2=7
gcd(7,79)=1 so there exist
Hence, 1 belongs to J. Hence, J=(1),b=1
2)
Using Euclidean Algo we can find:x,y so that:
7x+79y=1
We can use Euclidean algorithm but since 7 is a smaller number can do it manually which is easier for smaller numbers.
79=2 mod 7
Hence,79*3=3*2=6=-1 mod 7
79*3=237=238-1=7*34-1
Hence, 1=7*34-79*3
But, 35*7-119*2=7
So, 1=(35*7-119*2)*34-79*3
1=35*238-119*68-79*3
