How do I find y1 if tan 1 xy 1 x2y SolutionBy implicit diff
How do I find y^1 if tan ^-1 (xy)= 1 + x^2y 
Solution
By implicit differentiation:
 (xy\' + y) / [1 + (xy)^2] = 2xy + (x^2)y\'
 
 xy\' + y = [2xy + (x^2)y\'][1 + (xy)^2]
 xy\' - (x^2)y\'[1 + (xy)^2] = 2xy[1 + (xy)^2] - y
 y\' = {2xy[1 + (xy)^2] - y} / {x - (x^2)y\'[1 + (xy)^2]}
![How do I find y^1 if tan ^-1 (xy)= 1 + x^2y SolutionBy implicit differentiation: (xy\' + y) / [1 + (xy)^2] = 2xy + (x^2)y\' xy\' + y = [2xy + (x^2)y\'][1 + (xy) How do I find y^1 if tan ^-1 (xy)= 1 + x^2y SolutionBy implicit differentiation: (xy\' + y) / [1 + (xy)^2] = 2xy + (x^2)y\' xy\' + y = [2xy + (x^2)y\'][1 + (xy)](/WebImages/44/how-do-i-find-y1-if-tan-1-xy-1-x2y-solutionby-implicit-diff-1138140-1761609712-0.webp)
