How do I find y1 if tan 1 xy 1 x2y SolutionBy implicit diff

How do I find y^1 if tan ^-1 (xy)= 1 + x^2y

Solution

By implicit differentiation:
(xy\' + y) / [1 + (xy)^2] = 2xy + (x^2)y\'

xy\' + y = [2xy + (x^2)y\'][1 + (xy)^2]
xy\' - (x^2)y\'[1 + (xy)^2] = 2xy[1 + (xy)^2] - y
y\' = {2xy[1 + (xy)^2] - y} / {x - (x^2)y\'[1 + (xy)^2]}

How do I find y^1 if tan ^-1 (xy)= 1 + x^2y SolutionBy implicit differentiation: (xy\' + y) / [1 + (xy)^2] = 2xy + (x^2)y\' xy\' + y = [2xy + (x^2)y\'][1 + (xy)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site