Linear algebra Given that A B and AB are invertible matrices
     Linear algebra. Given that A, B and A+B are invertible matrices. How to show that A(A^{-1}+B^{-1})B(A+B)^{-1}=1 ? 
  
  Solution
GIVEN STATEMENT
A(A-1+B-1)B(A+B)-1
And we know that
XX-1=I
so
A(A-1+B-1)B(A+B)-1
=(AA-1+AB-1)B(A+B)-1 (MULTPLYING A WITH (A-1+B-1))
=(I+AB-1)B(A+B)-1 (SINCE AA-1=I)
=(B+AB-1B)(A+B)-1 (MULTPLYING B WITH (A-1+B-1))
=(B+A)(A+B)-1 (SINCE BB-1=I)
=(A+B)(A+B)-1 (SINCE A+B=B+A)
=I
HENCE PROVED

