Linear algebra Given that A B and AB are invertible matrices

Linear algebra. Given that A, B and A+B are invertible matrices. How to show that A(A^{-1}+B^{-1})B(A+B)^{-1}=1 ?

Solution

GIVEN STATEMENT

A(A-1+B-1)B(A+B)-1

And we know that

XX-1=I

so

A(A-1+B-1)B(A+B)-1

=(AA-1+AB-1)B(A+B)-1   (MULTPLYING A WITH (A-1+B-1))

=(I+AB-1)B(A+B)-1 (SINCE AA-1=I)

=(B+AB-1B)(A+B)-1   (MULTPLYING B WITH (A-1+B-1))

=(B+A)(A+B)-1   (SINCE BB-1=I)

=(A+B)(A+B)-1 (SINCE A+B=B+A)

=I

HENCE PROVED

 Linear algebra. Given that A, B and A+B are invertible matrices. How to show that A(A^{-1}+B^{-1})B(A+B)^{-1}=1 ?SolutionGIVEN STATEMENT A(A-1+B-1)B(A+B)-1 And

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site