Here are two formulas for piecewisedefined functions Use the
Solution
A.
for H(2)
H(k) = sqrt (k - 2)
H(2) = sqrt (2 - 2) = 0
B.
m(H(2)) = m(0)
for y = 0,
m(y) = 2y^2 - 4
m(0) = 2*0 ^2 - 4 = -4
C.
m*(3) = 2*y^2 - 4 = 2*3^2 - 4 = 14
D.
H(m(3)) = H(14)
H(k) = sqrt(k - 2)
H(14) = sqrt (14 - 2) = sqrt 12 = 2*sqrt 3
E.
H(-1) = undefined
F.
m(H(-1)) = undefined
G.
m(-2) = -1
H.
H(m(-2)) = H(-1) = undefined
I.
m(-4) = 2*(-4) = -8
J.
H(m(-4)) = H(-8)
H(k) = |k+6|
H(-8) = |-8+6| = |-2|
H(-8) = 2
K.
H(-3) = |=3 + 6| = 3
L.
H(H(-3)) = H(3)
H(3) = sqrt (3 - 2) = 1
M.
H(5)*m(1) = sqrt (5 - 2)*(2*1^2 - 4) = -2*sqrt 3
N.
5*H(5) = 5*sqrt (5 - 2) = 5*sqrt 3
O.
3 + m(1) = 3 + (2*1^2 - 4) = 1
P.
m(3 + H(-4))
H(-4) = |-4 + 6| = 2
m(3 + 2) = m(5) = 2*5^2 - 4 = 46
q.
H(k) = 2
if H(k) = sqrt (k - 2) = 2
k - 2 = 4
k = 6,
if H(k) = |k +6| = 2
k + 6 = 2
k = -4
OR
-(k + 6) = 2
k = -8
R.
m(y) = 5,
if m(y) = 2y = 5
y = 5/2, it\'s not possible since y should be less than -3
if m(y) = 2*y^2 - 5 = 5
2*y^2 = 10
y^2 = 5
y = +sqrt 5



