Given integers abcd verify the following a if ab then abc b
Given integers a,b,c,d, verify the following:
a.) if a|b, then a|bc
b.) if a|b and ac, then a^2 | bc
c.) a|b if and only if ac|bc, where c=/=0
d.) if a|b and c|d, then ac|bd
please show work
Solution
a)
a|b implies :b=ma for some integer m
Hence, bc=mca ie bc is multiple of a
Hence, a|bc
b)
False
a|ac for all c because :ac is a multiple of ac for all integers c
Let, a=2,b=2
Let, c=3
Hence, bc=6 and a|ac, a|b
a^2=4
But, a^2 =4 does not divide bc
c)
Let, ac|bc
c is not equal to zero.
Hence, ac=mbc or
c(a-mb)=0
Since c is non zero . Hence, a-mb=0 or a=mb
Hence, a|b
Now let, a|b
Hence, b=ma
Hence, bc=mac
Hence, ac|bc
Hence proved
d)
a|b means ,b=ma for some integer m
c|d means ,d=nc for some integer n
Hence,
bd=ma*nc=mn*ac
Hence, ac|bd

