Rewrite sin theta cos thetasin theta cos theta sin thetac
Rewrite sin theta + cos theta/sin theta - cos theta - sin theta/cos theta over a common denominator. Type your answer in terms of sine and/or cosine. sin theta + cos theta/sin theta - cos theta - sin theta/cos theta = (Simplify your answer.)
Solution
[(sin+cos)/sin]-[(cos-sin)/cos]
=[[(sin+cos)cos]-[(cos-sin)sin]]/(sincos)
=[(sincos+cos2)-(sincos-sin2)]/(sincos)
=[sincos+cos2-sincos+sin2]/(sincos)
=(cos2+sin2)/(sincos)
=1/(sincos)
therefore [(sin+cos)/sin]-[(cos-sin)/cos]=1/(sincos)
