Boolean Algebra Proof 1 ABA BB B A 2 x xy z x z Solut
Boolean Algebra (Proof):
1) (AB)’(A’ + B)(B’ + B) = A’
2) x + xy + z = x + z
Solution
1) (AB)’(A’ + B)(B’ + B) = A’
Note that (B’ + B) = 1 (complement law)
So (AB)’(A’ + B)(B’ + B) = (AB)’(A’ + B) = (A\' + B\')(A’ + B)
And (A\' + B\')(A\' + B) = A\' (See following truth table for verification)
Hence (AB)’(A’ + B)(B’ + B) = A’
2) x + xy + z = x + z
Taking x common,
x + xy + z
= x(1+y) + z
And or of 1 with any variable is 1 so , (1+y) = 1
= x.1 + z = x + z
Hence x + xy + z = x + z
| p | q | ((¬p ¬q) (¬p q)) |
|---|---|---|
| F | F | T |
| F | T | T |
| T | F | F |
| T | T | F |
