Convert the following numbers to binary numbers DADA16 70072
Solution
a)(DA.DA)16
Method-1(hexa-decimal to decimal - decimal to binary)
To decimal
 d*16^1+a*16^0.d*16^-1+a*16^-2=208+10.(0.8125+0.0390625)
            =218.8462837---->its decimal
Decimal to Binary(remainders are noted by continously dividing quotient)
 218/2
 quotient/2--->remainder
 109/2--->0
 54/2--->1
 27/2--->0
 13/2--->1
 6/2--->1
 3/2--->0
 1/2--->1
 1/2--->1-----> take remainders in reverse order i.e 11011010
For decimal point value(take decimal value and multiply the decimal point with16)
 .8462837*2=1.69256756------>1
 .69256756*2=1.3851351------->1
 .3851351*2=0.7702702---------->0
 0.7702702*2=1.5405405----------->1
 0.5405405*2=1.081081----------->1
 0.081081*2=0.1621621----------->0
 0.162162*2=0.324324----------->1----------->1101101
 the final binary converted number is 11011010.1101101
Method-2 (direct hexa-decimal to binary)
 -------------
(da.da)16 => 11011010.11011010
Step 1 - Convert each hexa-decimal digit to a 4 digit binary number (the hexa-decimal digits may be treated as decimal for this conversion).
 Step 2 - Combine all the resulting binary groups
 d a .d a  
 1101 1010 .1101 1010
b)
(7002.2)8 => 111000000010010
Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).
 Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.
 7   0   0   2. 2  
 111   000   000   010.   010
c) (3210.01)4 .
3210.01
 Generallu radix 4 not used converted it simalarly to hexa and octal
 (3210.01) => 11100100.0001
Step 1 - Convert each 4 radix digit to a 2 digit binary number (the 4 radix digits may be treated as decimal for this conversion).
 Step 2 - Combine all the resulting binary groups
 3 2 1 0 .0 1
 11 10 01 00 .00 01
d)
(12345.4375)10 ==> (11000000111001.0111)2
Decimal to Binary Conversion:
 Step1: Consider the left side part of the decimal point
 step2: Now divide the number by 2 and consider the remainder
 step3: Repeat the step 2 until the gets divides(please see the below for reference)
 Now note down the binary digits from bottom to top
 step4: Now consider the digits after the decimal point(right side)
 Step5: Now multiply the number with 2 and consider the binary value before the decimal point.
 Step6: Repeat step5 until we are getting the repeated binary digits
 Step7: Combine the both binary values which we calculated earlier from left part of the decimal as well as right side.
12345=>
 12345/2=
 Number   Quotient   Remainder  
 12345/2   6172   1  
 6172/2   3086   0  
 3086/2   1543   0  
 1543/2   771   1  
 771/2   385   1  
 385/2   192   1  
 192/2   96   0  
 96/2   48   0  
 48/2   24   0  
 24/2   12   0  
    6   0  
    3   0  
    1   1  
Conversion of decimal Part
 0.4375 =>
 0.4375*2 = > 0.8750 - > 0
 0.8750*2 = > 1.75 - > 1
 0.75*2 = > 1.5 - > 1


