Convert the following numbers to binary numbers DADA16 70072
Solution
a)(DA.DA)16
Method-1(hexa-decimal to decimal - decimal to binary)
To decimal
d*16^1+a*16^0.d*16^-1+a*16^-2=208+10.(0.8125+0.0390625)
=218.8462837---->its decimal
Decimal to Binary(remainders are noted by continously dividing quotient)
218/2
quotient/2--->remainder
109/2--->0
54/2--->1
27/2--->0
13/2--->1
6/2--->1
3/2--->0
1/2--->1
1/2--->1-----> take remainders in reverse order i.e 11011010
For decimal point value(take decimal value and multiply the decimal point with16)
.8462837*2=1.69256756------>1
.69256756*2=1.3851351------->1
.3851351*2=0.7702702---------->0
0.7702702*2=1.5405405----------->1
0.5405405*2=1.081081----------->1
0.081081*2=0.1621621----------->0
0.162162*2=0.324324----------->1----------->1101101
the final binary converted number is 11011010.1101101
Method-2 (direct hexa-decimal to binary)
-------------
(da.da)16 => 11011010.11011010
Step 1 - Convert each hexa-decimal digit to a 4 digit binary number (the hexa-decimal digits may be treated as decimal for this conversion).
Step 2 - Combine all the resulting binary groups
d a .d a
1101 1010 .1101 1010
b)
(7002.2)8 => 111000000010010
Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).
Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.
7 0 0 2. 2
111 000 000 010. 010
c) (3210.01)4 .
3210.01
Generallu radix 4 not used converted it simalarly to hexa and octal
(3210.01) => 11100100.0001
Step 1 - Convert each 4 radix digit to a 2 digit binary number (the 4 radix digits may be treated as decimal for this conversion).
Step 2 - Combine all the resulting binary groups
3 2 1 0 .0 1
11 10 01 00 .00 01
d)
(12345.4375)10 ==> (11000000111001.0111)2
Decimal to Binary Conversion:
Step1: Consider the left side part of the decimal point
step2: Now divide the number by 2 and consider the remainder
step3: Repeat the step 2 until the gets divides(please see the below for reference)
Now note down the binary digits from bottom to top
step4: Now consider the digits after the decimal point(right side)
Step5: Now multiply the number with 2 and consider the binary value before the decimal point.
Step6: Repeat step5 until we are getting the repeated binary digits
Step7: Combine the both binary values which we calculated earlier from left part of the decimal as well as right side.
12345=>
12345/2=
Number Quotient Remainder
12345/2 6172 1
6172/2 3086 0
3086/2 1543 0
1543/2 771 1
771/2 385 1
385/2 192 1
192/2 96 0
96/2 48 0
48/2 24 0
24/2 12 0
6 0
3 0
1 1
Conversion of decimal Part
0.4375 =>
0.4375*2 = > 0.8750 - > 0
0.8750*2 = > 1.75 - > 1
0.75*2 = > 1.5 - > 1

