Function fx1 x gx x2 8x Find the domain of g fx use interval
Function:
f(x)=1/ x, g(x)= x2 8x
Find the domain of (g f)(x). (use interval notation)
Find the domain of (f g)(x). (use interval notation)
Find (f f)(x).
Find (gof)(x)
Find the domain of (f f)(x). (use interval notation)
Find (g g)(x).
Solution
f(x)=1/sqrtx , g(x)=x2-8x
For f(x), x cant be 0 or less than 0
Therefore domain of x=(0,infinity)
And gof(x)=g(f(x))=g(1/sqrtx)=(1/sqrtx)2-8(1/sqrtx)= 1/x - 8/sqrtx = (sqrtx -8x)/xsqrtx
Therefore domain of gof(x)=(0,infinity)
2. fog(x)=f(g(x))=f(x2-8x)=1/sqrt(x2-8x)
x2-8x should be greater than zero
x2-8x>0
x>8 or x<0
Therefore domain is (-infinity,0)U(8,infinity)
