Consider T LF given by Tz1 z2 z3 2z2 0 5z3 Let w 0 0 1 Com
Consider T L(F) given by T(z1, z2, z3) = (2z2, 0, 5z3).
Let w = (0, 0, 1). Compute the list (w, Tw, T2w, T3 w) and then find a linear dependence for this list. Use this to find an eigenvalue for T. Can you find a nonzero eigenvector for this eigenvalue?
Solution
w=(0,0,1)
T(w)=(0,0,5)=5w
T^2(w)=T(T(w))=T(5w)=5T(w)=5^2w
T^3(w)=T(T^2(w))=T(5^2w)=5^2T(w)=5^3w
So an eigenvalue for T is 5 and non zero eigenvector is w as:
T(w)=5w
