Let V be a real inner product space and let u v sum V such t
Let V be a real inner product space, and let u, v sum V such that ||u|| = ||v|| = (u, v) = 1. Show that u = v.
Solution
Let u = (u1,u2,…,un) and v = (v1,v2,…,vn). Then ||u||= (u12 +u22+…+un2) and ||v||= (v12 +v22+…+vn2). Since ||u||= ||v|| = 1, we have (u12 +u22+…+un2)=(v12 +v22+…+vn2)= 1. Also <u, v> = u1v1+u2v2+…+unvn =1. Then ||u-v|| = [(u1-v1)2+(u2-v2)2+…+(un-vn)2 = (u12 +u22+…+un2)+(v12 +v22+…+vn2)-2(u1v1+u2v2+…+unvn)]1/2 = (1+1-2)1/2 = 0. Hence u = v.
