PLEASE ANSWER ALL Given that fx sin x gx cos x and hx tan x
PLEASE ANSWER ALL!
Given that f(x) sin x, g(x) cos x, and h(x) tan x, evaluate the given function. The point (x 3), on the circle x2 y also lies on the terminal side of an angle a in quadrant ll. The point y on the circle x2 y2-1, also lies on the terminal side of an angle B n quadrant lli. g(2a) 4Solution
2) sin = -4/5
cos = sqrt[1 – sin^2] = 3/5
tan = -4/3
Now tan(2) = 2*tan/[1 + tan^2] = (-8/3)/(25/9) = -24/25
3) cos = 15/17
sin = sqrt[1 – cos^2] = -8/17
Now sin(2) = 2*sin*cos = -240/289 (First option)
4) csc = 1/sin = 25/24
Sin = 24/25
cos = sqrt[1 – sin^2] = -7/25
tan = -24/7
Now cos(2) = (1 – tan^2)/[1 + tan^2] = -527/625 (Last option)
5) csc = 1/sin = -4/3
Sin = -3/4
cos = sqrt[1 – sin^2] = -7/4
tan = 3/7
Now cos = 2*cos^2(/2) – 1 = -7/4
cos^2(/2) = (-7 + 4)/8
cos(/2) = -sqrt[(-7 + 4)/8]
