A baseball player hits a ball and it goes straight up into t
A baseball player hits a ball and it goes straight up into the air (fly ball). The height of the ball is described as:
h(t)=-16t^2+42t+10
When is the ball at the maximum height? (Hint: the maximum height occurs at the vertex)
Solution
given h(t)=-16t2+42t+10
h(t)=(-16*(t2-(42/16)t))+10
h(t)=(-16*(t2-(21/8)t))+10
h(t)=(-16*(t2-(21/8)t+(21/16)2-(21/16)2))+10
h(t)=(-16*(t2-(21/8)t+(21/16)2)) +(16*(21/16)2)+10
h(t)=(-16*(t2-(21/16)t)2) +(441/16)+10
h(t)=(-16*(t2-(21/16)t)2) +(601/16)
vertex is (21/16 ,601/16)
maximum height =601/16=37.5625
ball is at maximum height when t =21/16=1.3125
