Using Algebra operations simplify these Boolean expressions

Using Algebra operations, simplify these Boolean expressions to minimal Sum-of-Product form:
b) G AB AC A\'BC

Solution

______________
[AB + AC +A\'BC]  

ASSUME THAT
X=AB
Y=AC
Z=A\'BC
_______   _ _ _
[X+Y+Z] = X Y Z     --exp(1)
    _ __
NOW X=AB = (A\'+B\')
    _ __
Y=AC = (A\'+C\')
_ ____
Z=A\'BC = (A+B\'+C\')

Now Put Value in exp(1) :

--> (A\'+B\')(A\'+C\')(A+B\'+C\')
    (A\'.A\' + A\'C\' + B\'A\' + B\'C\')(A+B\'+C\')
    (A\' + A\'C\'+ + A\'B\' + B\'C\')(A+B\'+C\')
    (A\'A + AA\'C + A\'AB\'+AB\'C\') + (A\'B + A\'C\'B\' + A\'B\'B\' + B\'B\'C\') + (A\'C\' + A\'C\'C\' + A\'B\'C\' + B\'C\'C\')
    0 + 0 + 0 +AB\'C\' + A\'B +A\'B\'C\' + A\'B\' + B\'C\' + A\'C\' + A\'C\' + A\'B\'C\' + B\'C\'
(AB\'C + A\'B\'C + A\'B(C+C\') + A\'B\'(C+C\') + A\'B\'C\' + A\'B\'(C+C\') + A\'C\'(B+B\'))


Using Algebra operations, simplify these Boolean expressions to minimal Sum-of-Product form: b) G AB AC A\'BC Solution______________ [AB + AC +A\'BC] ASSUME THA

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site