Find the exact value of cosu v given that sin u 35 with u
Find the exact value of cos(u + v) given that sin u = -3/5, with u = -3/5, with u in quadrant III, and sin v = -12/13, with in the quadrant IV. cos(u + v) =
Solution
given sinu =-3/5 , u in QIII, sinv=-12/13,vin QIV
in QIII, cosu is negative , in QIV cosv is positive
sin2x+cos2x =1 is an identity
so
sin2u+cos2u =1
(-3/5)2+cos2u =1
(9/25)+cos2u =1
cos2u =1-(9/25)
cos2u =(16/25)
cosu =(-4/5)
sin2v+cos2v =1
(-12/13)2+cos2v =1
(144/169)+cos2v =1
cos2v =1-(144/169)
cos2v =(25/169)
cosv =(5/13)
cos(u+v) =cosucosv -sinusinv
cos(u+v) =((-4/5)(5/13))- ((-3/5)(-12/13))
cos(u+v) =(-20/65)- (36/65)
cos(u+v) =-56/65
