INT 1 x3 1 dxSolutionI 1 x 1 dx Let I 1 x1xx1
INT( 1/ (x^3 - 1) dx
Solution
I = [ 1 / ( x³ - 1 ) ] dx
Let :
I = { 1 / (x-1)(x²+x+1) ] } dx = { [ A / (x-1) ] + [ (Bx+C) / (x²+x+1) ] } dx ... (1)
Then,
... A(x²+x+1) + (Bx+C)(x-1) 1.......... (2)
x = 1 A(3) + 0 = 1 A = 1/3
Also, differentiating (2) w.r.t. x,
A(2x+1) + (Bx+C)(1) + B(x-1) = 0 ......... (3)
x = 0 A(1) + C - B = 0 B - C = 1/3 ..... (4)
Differentiating (3) w.r.t. x,
A(2) + B(1) + B(1) = 0 B = -A = -1/3
from (3), C = B - (1/3) = (-1/3) - (1/3) = -2/3
......................................…
From (1), then,
I = (1/3) [ 1 / (x-1) ] dx + { [ (-1/3)x - (2/3) ] / (x²+x+1) } dx
= ....... the main job is done ........
= ....... now you do the rest ..........
![INT( 1/ (x^3 - 1) dxSolutionI = [ 1 / ( x³ - 1 ) ] dx Let : I = { 1 / (x-1)(x²+x+1) ] } dx = { [ A / (x-1) ] + [ (Bx+C) / (x²+x+1) ] } dx ... (1) Then, ... A(x² INT( 1/ (x^3 - 1) dxSolutionI = [ 1 / ( x³ - 1 ) ] dx Let : I = { 1 / (x-1)(x²+x+1) ] } dx = { [ A / (x-1) ] + [ (Bx+C) / (x²+x+1) ] } dx ... (1) Then, ... A(x²](/WebImages/46/int-1-x3-1-dxsolutioni-1-x-1-dx-let-i-1-x1xx1-1143951-1761614275-0.webp)