fx11x3x211x1 Find the real zeros Use the real zeros to facto
f(x)=11x^3-x^2+11x-1
Find the real zeros
Use the real zeros to factor f.
Solution
f(x) = 11x^3 - x^2 + 11x - 1
to find zeros of the function set f(x) = 0
11x^3 - x^2 + 11x - 1 = 0
rational zeros are
+- { 1 } / { 1 , 11 }
actual zero occur at x = 1/11
therefore, to find other zeros divide 11x^3 - x^2 + 11x - 1 by 11x - 1
on dividing we get x^2 + 1
setting x^2 + 1 = 0
x^2 = -1
x = + - i
therefore, 3 zeros are
x = 1/11
x = i
x = -i
factors are
11x^3 - x^2 + 11x - 1 = (11x -1 ) ( x^2 + 1)

