Show that the given matrix is nonsingular for every real val
Show that the given matrix is non-singular for every real value of t. A(t) (8e^t sin t -8e^t cos t e^t cos t e^t sin t) det A(t) = notequalto 0 Find A^-1(t) using Theorem II.2.
Solution
A(t) is a 2x2 matrix. Its determinant detA(t) = ( 8et sin t)*( et sin t) - (-8et cos t)(et cos t) = 8e2t sin2 t + 8e2t cos2 t = 8e2t( sin2 t + cos2 t ) = 8 e2t [ as ( sin2 t + cos2 t ) = 1]. Further, since 8 e2t 0 (unless t = - ), hence detA(t) 0.
We have not been advised as to what the theorem II.2 states, but we know that if A = [ a b ] then [ c d ],
A-1 = 1/(det A) [ d -b ] [ -c a ]
Here a = 8et sin t , b = -8et cos t , c = et cos t and d = et sin t.Therefore, A-1(t) = 1/(8e2t ) [ et sin t 8et cos t ] [ -et cos t 8et sin t ] =
(1/8) [ e-tsin t 8e-t cos t ] [ -e-t cos t 8e-t sin t ]
