Find the first derivative of each of the following functions
Find the first derivative of each of the following functions: a. f(x) = 2x5 + 4x4 – 6x2 + 1
b. f(x) = (x2 – 5x + 2)(2x2 – x + 4 ) --- Use the Product Rule
c. f(x) = (x2 – 1) / (x + 1) --- Use the Quotient Rule
d. f(x) = ((6x2 + 5) +3 )2 --- Use the Power Function Rule (Chain Rule)
e. f(x) = (8 –2x) (4-2x) x
f. f(X) = 40x + 1500 / x
g. f(x) = (x – 25) (130 – x)2
Solution
a.Given f(x) = 2x5+ 4x4– 6x2+ 1
f\'(x) = d/dx( 2x5 + 4x4 – 6x2 + 1)
= 10x4 + 16x3 - 12x
b. Given f(x) = (x2 – 5x + 2)(2x2 – x + 4 )
We know product rule D(uv) = uv\' + u\'v
f\'(x) = (x2 – 5x + 2)*d/dx(2x2 – x + 4 ) +d/dx (x2 – 5x + 2)*(2x2 – x + 4 )
= (x2 – 5x + 2)(4x – 1 ) + (2x – 5)(2x2 – x + 4 )
c. Given f(x) = (x2 – 1) / (x + 1)
we know quotient rule D(u/v) = ( u\'v - uv\' )/v2
f\'(x) = [ d/dx(x2 – 1) * (x + 1) - (x2 – 1)* d/dx(x + 1) ] / (x + 1)2
= [ (2x)*(x + 1) - (x2 – 1)(1) ]/(x + 1)2
= [ x2 + 2x - 1 ] / (x + 1)2
d. Given f(x) = ((6x2 + 5) +3 )2
we know power function rule D(xn) = nxn-1
f\'(x) = d/dx[ ((6x2 + 5) +3 )2 ]
= 2((6x2 + 5) +3 ) * d/dx( (6x2 + 5) +3 )
= 2((6x2 + 5) +3 ) * (12x)
= 24x((6x2 + 5) +3 )
e. Given f(x) = (8 –2x) (4-2x) x
f\'(x) = d/dx[ (8 –2x) (4x-2x2) ]
= ( 8 - 2x)*( 4- 4x ) + (-2)*(4x-2x2)
= 32 - 40x + 8x2 - 8x + 4x2
= 12x2 - 48x + 32
f. Given f(X) = 40x + 1500 / x
f\'(x) = d/dx [ 40x + 1500 / x ]
= 40 - 1500/x2
g. Given f(x) = (x – 25) (130 – x)2
f\'(x) = d/dx[ (x – 25) (130 – x)2 ]
= (x - 25)*d/dx[ (130 – x)2 ] + d/dx[x-25]*(130 – x)2
= -2(x-25)(130-x) + (130 – x)2

