Prove the trigonometric identity 1 cosx1 cosx 2csc2 x 2
     Prove the trigonometric identity.  1 - cos(x)/1 + cos(x) = 2csc^2 (x) - 2 csc(x) cot(x) - 1 
  
  Solution
We can derive LHS from RHS and prove the identity.
RHS = 2csc2x - 2csc(x)cot(x) -1
= 2/sin2x - 2cosx/sin2x - 1
= 2-2cosx - sin2x/sin2x
= (2 - 2cosx -(1-cos2x))/sin2x (using indentity cos2x + sin2x = 1)
= cos2x - 2cosx + 1/ sin2x
= (1-cosx)2/sin2x
= (1-cosx)2/(1-cos2x)
= (1-cosx)2/(1+ cosx)(1- cosx)
= (1-cosx)/(1+cosx) = LHS
Hence proved!!

