Prove the trigonometric identity 1 cosx1 cosx 2csc2 x 2

Prove the trigonometric identity. 1 - cos(x)/1 + cos(x) = 2csc^2 (x) - 2 csc(x) cot(x) - 1

Solution

We can derive LHS from RHS and prove the identity.

RHS = 2csc2x - 2csc(x)cot(x) -1

       = 2/sin2x - 2cosx/sin2x - 1

       = 2-2cosx - sin2x/sin2x

       = (2 - 2cosx -(1-cos2x))/sin2x (using indentity cos2x + sin2x = 1)

       = cos2x - 2cosx + 1/ sin2x

      = (1-cosx)2/sin2x

      = (1-cosx)2/(1-cos2x)

      = (1-cosx)2/(1+ cosx)(1- cosx)

      = (1-cosx)/(1+cosx) = LHS

Hence proved!!

 Prove the trigonometric identity. 1 - cos(x)/1 + cos(x) = 2csc^2 (x) - 2 csc(x) cot(x) - 1SolutionWe can derive LHS from RHS and prove the identity. RHS = 2csc

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site