Let yrightarrow 4 7 6 and urightarrow 1 6 6 Write yrightarr
Let y^rightarrow [-4 -7 6] and u^rightarrow = [1 -6 6]. Write y^rightarrow as the sum of two orthogonal vectors, x^rightarrow_1 in Span {u} and x^rightarrow_2 orthogonal to u^rightarrow.
Solution
So, we want : y = x1+ x2
x1 = ku ; x1*x2 =0 ; x1 = ( k , -6k , 6k)
( 4 , -7 , 6) = x1 +x2
Now take dot product with x1 on both sides:
(4, -7 , 6)(k , -6k , 6k) = 73k^2 +0
k can be cancelled out : ( 4 +42+36) = 73k
k = 82/73
So, x1 = ku = [ 82/73 , -492/73 , 216/73 ] ^T
x2 = y - x1 = [ -4, -7 , 6]^T - [ 82/73 , -492/73 , 216/73 ] ^T
= [ -374/73 , -19/73 , -222/73]^T
![Let y^rightarrow [-4 -7 6] and u^rightarrow = [1 -6 6]. Write y^rightarrow as the sum of two orthogonal vectors, x^rightarrow_1 in Span {u} and x^rightarrow_2 Let y^rightarrow [-4 -7 6] and u^rightarrow = [1 -6 6]. Write y^rightarrow as the sum of two orthogonal vectors, x^rightarrow_1 in Span {u} and x^rightarrow_2](/WebImages/46/let-yrightarrow-4-7-6-and-urightarrow-1-6-6-write-yrightarr-1145105-1761615231-0.webp)