Manually find the solution to the following cubic equation B
Manually find the solution to the following cubic equation By iterating three times with the newtons method.
 
Ax3+ bx2+ cx+ d=0
 
A=1
B=-6.6
C=13.31
D=-7.986
 
Please explain
Ax3+ bx2+ cx+ d=0
A=1
B=-6.6
C=13.31
D=-7.986
Please explain
Solution
A=1 B=-6.6 C=13.31 D=-7.986 Ax^3+ Bx^2+ C x+ D=0 f(x) = Ax^3+ Bx^2+ C x+ D f \'(x) = 3 Ax^2+ 2 Bx^2+ C x_ {n+1}= x_{n} - f(x_n) / f \'(x_n) initial guess x0= 3.1 n=0==> x_ {1}= x_{0} - f(x_0) / f \'(x_0) x_1= 3.1 - f(3.1) / f \'(3.1) x_1= 3.1 -(-0.36) / (1.22) = 3.39508 x_1= 3.39508 n=1==> x_ {2}= x_{1} - f(x_1) / f \'(x_1) x_2= 3.39508 - f(3.39508) / f \'(3.39508) x_2= 3.69016 n=2==> x_ {3}= x_{2} - f(x_2) / f \'(x_2) x_3= 3.69016 - f( 3.69016) / f \'( 3.69016) x_3= 3.98524
