Solve the equation using the Laplace transformation and show

Solve the equation using the Laplace transformation and show the work please

Solve the equation using the Laplace transformation and show the work 4x + x + 16x = e^-t where x(0) = 2 and x(0) = 0

Solution

L[4x\'\' + x\' + 16x] = L[e^-t]

L[e^-t] = 1/(s + 1)

L(x) = Y(s)

L(x\') = s*L(x) - x(0) = s*Y(s) - 2

L(x\'\') = s^2*L(x) - s*x(0) - x\'(0)= s^2*Y(s) - 2s - 0

L(x\'\') = s^2*Y(s) - 2s

4s^2*Y(s) - 8s + s*Y(s) - 2 + 16*Y(s) = 1/(s + 1)

(4s^2 + s + 16)*Y(s) - (8s + 2) = 1/(s + 1)

(4s^2 + s + 16)*Y(s) = 1/(s + 1) + (8s + 2)

Y(s) = [1/(s + 1)*(4s^2 + s + 16)] + [(8s + 2)/(4s^2 + s + 16)]

Y(s) =

Solve the equation using the Laplace transformation and show the work please Solve the equation using the Laplace transformation and show the work 4x + x + 16x

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site