Solve the equation using the Laplace transformation and show
Solve the equation using the Laplace transformation and show the work please
Solve the equation using the Laplace transformation and show the work 4x + x + 16x = e^-t where x(0) = 2 and x(0) = 0Solution
L[4x\'\' + x\' + 16x] = L[e^-t]
L[e^-t] = 1/(s + 1)
L(x) = Y(s)
L(x\') = s*L(x) - x(0) = s*Y(s) - 2
L(x\'\') = s^2*L(x) - s*x(0) - x\'(0)= s^2*Y(s) - 2s - 0
L(x\'\') = s^2*Y(s) - 2s
4s^2*Y(s) - 8s + s*Y(s) - 2 + 16*Y(s) = 1/(s + 1)
(4s^2 + s + 16)*Y(s) - (8s + 2) = 1/(s + 1)
(4s^2 + s + 16)*Y(s) = 1/(s + 1) + (8s + 2)
Y(s) = [1/(s + 1)*(4s^2 + s + 16)] + [(8s + 2)/(4s^2 + s + 16)]
Y(s) =
