Differential Equation Undetermined coeffcient Method d2ydx
Differential Equation
Undetermined coeffcient Method d^2y/dx - 4dy/dx + 3y = 3 + e^2x; y(0) = 10, y(0) = -4 Solution
First we solve the homogeneous ODE
y\'\'-4y\'+3y=0
Let, y=e^{kx}
Substituting gives
K^2-4k+3=0
k=1,3
So general solution to inhomogeneous ODE is
yh= a e^x+b e^{3x}
Based on inhomogeneous part the guess for the particular solution
yp= C + D e^{2x}
Substituting gives
4D e^{2x} -8 D e^{2x}+3D e^{2x}+3C=3+ e^{2x}
D=-1, C=1
So,
general solution is
y(x)= a e^x+b e^{3x}+1 - e^{2x}
y(0)=0
Hence, a+b+1-1=0 hence, a=-b
y\'(0)=-1
So,
a+3b-2=1
a+3b=3
b=3/2,a=-3/2
y(x)= -3/2( e^x - e^{3x})+1 - e^{2x}
