java eduwitcscomp1050PA3b Please supply 6 numbers af java
$ java edu.wit.cs.comp1050.PA3b
Please supply 6 numbers (a-f).
$ java edu.wit.cs.comp1050.PA3b 1.0 2.0 2.0 4.0 4.0 5.0
The equation has no solution.
$ java edu.wit.cs.comp1050.PA3b 9.0 4.0 3.0 -5.0 -6.0 -21.0
Solution: x=-2.000, y=3.000
 
 Here is my code in the Linear Equation class.
public class LinearEquation {
private double a;
private double b;
private double c;
private double d;
private double e;
private double f;
/**
* Initialize the linear equation of form:
* ax + by = e
* cx + dy = f
*
* @param a parameter a
* @param b parameter b
* @param c parameter c
* @param d parameter d
* @param e parameter e
* @param f parameter f
*/
public LinearEquation(double a, double b, double c, double d, double e, double f) {
// replace with your code
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.e = e;
this.f = f;
}
/**
* Convenience constructor to initialize
* the linear equation via array
*
* THIS CONSTRUCTOR CALLS THE CONSTRUCTOR
* ABOVE USING THE ARRAY CONTENTS
*
* @param p parameter array, assumed to be length 6 (a-f, in order)
*/
public LinearEquation(double[] p) {
// MUST call the above constructor
// with the contents of p
}
/**
* Returns parameter a
*
* @return a
*/
public double getA() {
return a; // replace with your code
}
/**
* Returns parameter b
*
* @return b
*/
public double getB() {
return b; // replace with your code
}
/**
* Returns parameter c
*
* @return c
*/
public double getC() {
return c; // replace with your code
}
/**
* Returns parameter d
*
* @return d
*/
public double getD() {
return d; // replace with your code
}
/**
* Returns parameter e
*
* @return e
*/
public double getE() {
return e; // replace with your code
}
/**
* Returns parameter f
*
* @return f
*/
public double getF() {
return f; // replace with your code
}
/**
* Returns true if the parameterized
* equation is solvable (i.e. denominator
* ad-bc is not 0)
*
* @return true if solvable, false otherwise
*/
public boolean isSolvable() {
if (((a*d) -(b*c)) == 0 )
return false;
else
return true; // replace with your code
}
/**
* Returns solution for x if solvable,
* null otherwise
*
* @return x if solvable, null otherwise
*/
public Double getX() {
double numerator = ((e * d)-(b * f));
double denominator = ((a * d) - (b * c));
return numerator/denominator;
}
/**
* Returns solution for y if solvable,
* null otherwise
*
* @return y if solvable, null otherwise
*/
public Double getY() {
double numerator = ((a * f)-(e * c));
double denominator = ((a * d) - (b * c));
return numerator/denominator;
}
}
 
 Here is Main class with some code ?
public class PA3b {
/**
* Error to display if the command-line arguments are invalid
*/
public static final String ERR_USAGE = \"Please supply 6 numbers (a-f).\";
/**
* Error to display if the equation has no solution
*/
public static final String ERR_NOSLTN = \"The equation has no solution.\";
/**
* Number of required parameters (a-f)
*/
public static final int NUM_PARAMS = 6;
/**
* Validates command-line arguments and returns
* parameters if valid
*
* @param args command-line arguments
* @return if valid an array of parameters, else null
*/
public static double[] validateArgs(String[] args) {
if(args.length > 5){
}
return null; // replace with your code
}
/**
* Uses command-line arguments to create
* an instance of the linear equation,
* and reports the outcome
*
* @param args command-line arguments, interpreted as equation parameters
*/
public static void main(String[] args) {
}
}
ar by eSolution
// LinearEquation.java
/*
 * Class to solve linear equation
 * ax + by = e
 * cx + dy = f
 */
 public class LinearEquation {
    private double a;
 private double b;
 private double c;
 private double d;
 private double e;
 private double f;
   
    /**
    * Initialize the linear equation of form:
    * ax + by = e
    * cx + dy = f
    *
    * @param a parameter a
    * @param b parameter b
    * @param c parameter c
    * @param d parameter d
    * @param e parameter e
    * @param f parameter f
    */
 public LinearEquation(double a, double b, double c, double d, double e, double f) {
        this.a = a;
        this.b = b;
        this.c = c;
        this.d = d;
        this.e = e;
        this.f = f;
    }
/**
 * Convenience constructor to initialize
 * the linear equation via array
 *
 * THIS CONSTRUCTOR CALLS THE CONSTRUCTOR
 * ABOVE USING THE ARRAY CONTENTS
 *
 * @param p parameter array, assumed to be length 6 (a-f, in order)
 */
 public LinearEquation(double[] p) {
    this(p[0], p[1], p[2], p[3], p[4], p[5]);
 }
   
/**
 * Returns parameter a
 *
 * @return a
 */
 public double getA() {
 return a; // replace with your code
 }
   
 /**
 * Returns parameter b
 *
 * @return b
 */
 public double getB() {
 return b; // replace with your code
 }
   
 /**
 * Returns parameter c
 *
 * @return c
 */
 public double getC() {
 return c; // replace with your code
 }
   
 /**
 * Returns parameter d
 *
 * @return d
 */
 public double getD() {
 return d; // replace with your code
 }
   
 /**
 * Returns parameter e
 *
 * @return e
 */
 public double getE() {
 return e; // replace with your code
 }
   
 /**
 * Returns parameter f
 *
 * @return f
 */
 public double getF() {
 return f; // replace with your code
 }
 
 
    /**
    * Returns true if the parameterized
    * equation is solvable (i.e. denominator
    * ad-bc is not 0)
    *
    * @return true if solvable, false otherwise
    */
    public boolean isSolvable() {
    if (((a*d) -(b*c)) == 0 )
    return false;
    else
    return true; // replace with your code
    }
   
 /**
 * Returns solution for x if solvable,
 * null otherwise
 *
 * @return x if solvable, null otherwise
 */
    public Double getX()
    {
        Double solution = null;
        if (isSolvable())
            solution = (double)(e*d - b*f)/(a*d - b*c);
       
        return solution;
    }
   /**
    * Returns solution for y if solvable,
    * null otherwise
    *
    * @return y if solvable, null otherwise
     */
    public Double getY()
    {
        Double solution = null;
        if (isSolvable())
            solution = (double)(a*f- e*c)/(a*d - b*c);
       
        return solution;
    }
}
// PA3b.java
import java.text.DecimalFormat;
 import java.util.Scanner;
public class PA3b {
   
    /**
    * Error to display if the command-line arguments are invalid
    */
    public static final String ERR_USAGE = \"Please supply 6 numbers (a-f).\";
   
    /**
    * Error to display if the equation has no solution
    */
    public static final String ERR_NOSLTN = \"The equation has no solution.\";
   
    /**
    * Number of required parameters (a-f)
    */
    public static final int NUM_PARAMS = 6;
   
    /**
    * Validates command-line arguments and returns
    * parameters if valid
    *
    * @param args command-line arguments
    * @return if valid an array of parameters, else null
    */
    public static double[] validateArgs(String[] args) {
        double[] p = new double[NUM_PARAMS];
    if(args.length == NUM_PARAMS){
        for (int i = 0; i < args.length; i++)
        {
            try{
                p[i] = Double.parseDouble(args[i]);
            }
            catch(Exception e)
            {
                System.out.println(\"Seems like inputs are not numbers\");
                System.exit(1);
            }
        }
    }
    else
    {
        System.out.println(ERR_USAGE);
        System.exit(1);
    }
    return p; // replace with your code
    }
    /**
    * Uses command-line arguments to create
    * an instance of the linear equation,
    * and reports the outcome
    *
    * @param args command-line arguments, interpreted as equation parameters
    */
    public static void main(String[] args) {
        double[] p = validateArgs(args);
        LinearEquation l = new LinearEquation(p);
          
        if (! l.isSolvable())
        {
            System.out.println(ERR_NOSLTN);
        }
        else
        {
            DecimalFormat df = new DecimalFormat(\"##.000\");
            System.out.println(\"Solution: x=\" + df.format(l.getX())
                    + \",y=\" + df.format(l.getY()));
        }
          
          
    }
 }










