Solve the linear programming problem using the simplex metho
     Solve the linear programming problem using the simplex method.  Maximize P = -x_1 + 2x_2  subject to -x_1 + x_2 lessthanorequalto 2  -x_1 + 3x_2 lessthanorequalto 8  x_1 - 4x_2 lessthanorequalto 10  x_1, x_2 greaterthanorequalto 0  Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.  A. The maximum value of P is P =  when x_1 =  and x_2 = (Simplify your answers.)  B. There is no optimal solution. 
  
  Solution
Solution:
Maximize p = -x1 + 2x2 subject to
 -x1 + x2 <= 2
 -x1 + 3x2 <= 18
 x1 - 4x2 <= 10
Tableau #1
 x1 x2 s1 s2 s3 p   
 -1 1 1 0 0 0 2
 -1 3 0 1 0 0 18   
 1 -4 0 0 1 0 10   
 1 -2 0 0 0 1 0
Tableau #2
 x1 x2 s1 s2 s3 p   
 -1 1 1 0 0 0 2
 2 0 -3 1 0 0 12   
 -3 0 4 0 1 0 18   
 -1 0 2 0 0 1 4
Tableau #3
 x1 x2 s1 s2 s3 p   
 0 1 -0.5 0.5 0 0 8
 1 0 -1.5 0.5 0 0 6
 0 0 -0.5 1.5 1 0 36   
 0 0 0.5 0.5 0 1 10
Optimal Solution: the maximum value of p = 10;
when x1 = 6, and x2 = 8

