The function T 1P2 rightarrow 1P2 given by Ta bx cx2 a b
     The function T: 1P_2 rightarrow 1P_2 given by  T(a + bx + cx^2) = (a - b) + (b - c)x + (c - a) x^2 is a linear transformation  Evaluate T(-1 + 6x + 2x^2)  = (-1 -6) + (6 -3)x + (2 +1)x^2  = -7 + 4x + 3x^2  Determine whether the following are linear transformation either prove that it is or prove it is not  T: 1R^3 rightarrow 1R^1 given by  T[x y z] = 3x  T: 1R^3 rightarrow 1R^2 given by T[x y z] = [x^2 + y z - x]  T(n + v) = T(u)+T(v) T(k n) hT(n) 
  
  Solution
1) T(a+bx+cx2)=(a-b)+(b-c)x+(c-a)x2 is linear transformation then
T(-1+6x+2x2) =(-1-6)+(6-2)x+(2-(-1))x2 =-7+4x+3x2
2) T(x,y,z) R3
=T(3X,0Y,0Z) =T(3X) is a linear transformation in R2
T (x,y,z)=T(x2+y,z-x) is not a linear transformation,since addition and scalar multiplications can be done in linear transformation and nothing more

