derivative of 2xx Solve using logarithmic differentiation So

derivative of (2x)^(x). Solve using logarithmic differentiation.

Solution

y = (2x)^x

ln y = ln (2x)^x

ln y = x ln 2x

ln y = x (ln 2 + ln x)

ln y = x ln 2 + x ln x

d/dx (ln y) = d/dx (x ln 2 + x ln x)

y\'/y = ln 2 + ln x + x/x

y\'/y = ln 2 + ln x + 1

y\'/y = ln x + ln 2 + 1

y\' = y(ln x + ln 2 + 1)

y\' = (2x)^x (ln x + ln 2 + 1)

Remember to rate the best answer first.

Rating encourages experts to continue helping you.

derivative of (2x)^(x). Solve using logarithmic differentiation. Solutiony = (2x)^x ln y = ln (2x)^x ln y = x ln 2x ln y = x (ln 2 + ln x) ln y = x ln 2 + x ln

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site