Find the graph ofthe function ylogx311 Then state its domain
Solution
log 3 (x - 3) - 1
We know that x - 3 > 0 for domain
x > 3
Range :
For any log function of the form log(ax + b) + C, etc
range is ALWAYS All reals
Graph is option C
-----------------------------------------------------------------
x^2 + 3x > 0
x(x + 3) > 0
Key values are 0 and -3
Region 1(-inf , -3)
Test = -4
x^2 + 3x comes out positive for x = -4
So, this works as tis positive....
Region 2 : (-3,0)
Test = -1
Doesnt work cuz x^2 + 3x < 0
Region 3 : (0 , inf)
Works!
So, domain :
(-inf , -3) U (0, inf)
---------------------------------------------------------------------
5)
10 ^(log(pi)
The 10^and log cancel out...
pi ---> ANS
--------------------------------------------------------------------
6)
ln(e^(4x))
ln and e together annhilate and canel out....
4x
--------------------------------------------------------------------
(1/2)^-4 = 16
In log form this is ....
log (base 16) 1/2 = -4 ---> ANS
--------------------------------------------------------------------
log (base 8) 4
We can write this as ....
ln(4) / ln(8)
ln(2^2) / ln(2^3)
Using exponent law, we get :
2ln(2) / 3ln(2)
2/3 ---> ANS
--------------------------------------------------------------------

