A real number X is selected uniformly at random in the conti
Solution
A)
Note that here,          
           
 a = lower fence of the distribution =    0      
 b = upper fence of the distribution =    10      
           
 Thus, the area between the said numbers is          
           
 c = lower number =    2      
 d = higher number =    5      
           
 Thus, the probability between these two values is          
           
 P = (d - c)/(b - a) =    0.3   [ANSWER]
*************
b)
It is like reducing the fences to (0,5).
Note that here,          
           
 a = lower fence of the distribution =    0      
 b = upper fence of the distribution =    5      
           
 Note that P(x<c) = P(a<x<c) = (c-a)/(b-a). Thus, as          
           
 c = critical value =    2      
           
 Then          
           
 P(x<2|x<=5) =    0.4   [ANSWER]  
****************
c)
Note that
P(3<=x<=8|x>=4) = P(4<=x<=8|x>=4)
which sort of reduces the distribution to (4,10).
Note that here,          
           
 a = lower fence of the distribution =    4      
 b = upper fence of the distribution =    10      
           
 Thus, the area between the said numbers is          
           
 c = lower number =    4      
 d = higher number =    8      
           
 Thus, the probability between these two values is          
           
 P(3<=x<=8|x>=4) = (d - c)/(b - a) =    0.666666667   [ANSWER]  
![A real number X is selected uniformly at random in the continuous interval [0,10]. (For example, X could be 3.87.) Find P(2 SolutionA) Note that here, a = lowe  A real number X is selected uniformly at random in the continuous interval [0,10]. (For example, X could be 3.87.) Find P(2 SolutionA) Note that here, a = lowe](/WebImages/46/a-real-number-x-is-selected-uniformly-at-random-in-the-conti-1146937-1761616665-0.webp)
![A real number X is selected uniformly at random in the continuous interval [0,10]. (For example, X could be 3.87.) Find P(2 SolutionA) Note that here, a = lowe  A real number X is selected uniformly at random in the continuous interval [0,10]. (For example, X could be 3.87.) Find P(2 SolutionA) Note that here, a = lowe](/WebImages/46/a-real-number-x-is-selected-uniformly-at-random-in-the-conti-1146937-1761616665-1.webp)
