Solve the recurrence relation an 5an1 6an2 where r a0 0 a

Solve the recurrence relation: a_n = 5_an-1 - 6a_n-2 where r a_0 = 0, a_1 = 6

Solution

an = 5an-1 - 6an-2     and a0=0, a1=6

therefore an-5an-11+6an-2 =0;

writing charactristic equation

x2-5x+6=0

(x-3)(x-2) = 0

x=3 or x=2;

an=A3n + B2n   where A and B are constant

at n=0;

0=A+B ----> A= - B;

at n=1

6= 3A + 2B = 3A-2A = A     therefore A=6 B = -6

an=63n -62n = 6( 3n - 2n )

 Solve the recurrence relation: a_n = 5_an-1 - 6a_n-2 where r a_0 = 0, a_1 = 6Solutionan = 5an-1 - 6an-2 and a0=0, a1=6 therefore an-5an-11+6an-2 =0; writing ch

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site