Let V and W be vector spaces over a field F let alpha Epsilo
     Let V and W be vector spaces over a field F. let alpha Epsilon Hom(V, W) and beta Epsilon Hom(W, V) satisfy the condition that alpha beta alpha = alpha. If w Epsilon im(alpha), show that alpha^-1 (w) = {beta(w) + upsilon - beta alpha(upsilon) Epsilon V}. 
  
  Solution
Let x 2 V , x = a1v1 + a2v2 + · · · + anvn for some scalars a1, a2, . . . , an.
 UT(x) = UT(a1v1 + a2v2 + · · · + anvn)
 = U(a1T(v1) + a2T(v2) + · · · + anT(vn)
 = U(a1x1 + a2x2 + · · · + anxn)
 = a1U(x1) + a2U(x2) + · · · + anU(xn)
 = a1v1 + a2v2 + · · · + anvn
 = a
 Let x 2 V , x = b1x1 + b2x2 + · · · + bnxn for some scalars b1, b2, . . . , bn.
 TU(x) = TU(b1x1 + b2x2 + · · · + bnxn)
 = T(b1U(x1) + b2T(x2) + · · · + bnT(xn)
 = T(b1v1 + b2v2 + · · · + bnvn)
 = b1T(v1) + b2T(v2) + · · · + bnT(vn)
 = b1x1 + b2x2 + · · · + bnxn
 = a
we found that it is true .

