if P0110 then P2017 aI bI c0201720170 dP eP if P0110 then P

if P=(0,-1;1,0), then P^2017 =?
a)I
b)-I
c)(0,-2017;2017,0)
d)-P
e)P
if P=(0,-1;1,0), then P^2017 =?
a)I
b)-I
c)(0,-2017;2017,0)
d)-P
e)P
if P=(0,-1;1,0), then P^2017 =?
a)I
b)-I
c)(0,-2017;2017,0)
d)-P
e)P

Solution

Given P=(0,-1;1,0).

Need to find P^2017

If P=0,  P^2017 = (0)^2017 =0

Because \'0n\' is zero for any number.

If P=-1,  P^2017 = (-1)^2017 =-1

Because in \'(-1)n\' if n is odd number then (-1)n =-1

if n is even number then (-1)n = 1

If P=1,  P^2017 = (1)^2017 =1

Because (1)n = 1 for any \'n\'

So, if P=(0,-1;1,0), then P^2017 =(0,-1;1,0)

Therefore,  P^2017 = P

Therefore, correct option is \'e\'

 if P=(0,-1;1,0), then P^2017 =? a)I b)-I c)(0,-2017;2017,0) d)-P e)P if P=(0,-1;1,0), then P^2017 =? a)I b)-I c)(0,-2017;2017,0) d)-P e)P if P=(0,-1;1,0), then

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site