If Solution 6 given a 33 b 7 c 37 a2 b2 c2 2 b c co
Solution
( 6 )
given a = 33 , b = 7 , c = 37
a^2 = b^2 + c^2 - 2 b c cos( A )
cos( A ) = ( b^2 + c^2 - a^2 ) / 2bc
b^2 = a^2 + c^2 - 2 a c cos( B )
cos( B ) = ( a^2 + c^2 - b^2 ) / 2 a c
b^2 = a^2 + c^2 - 2 a c cos( B )
cos( C ) = ( a^2 + b^2 - c^2 ) / 2 a b
Cos( A ) = ( 7^2 + 37^2 - 33^2 ) / ( 2*7*37)
Cos( A ) = 0.63514
A = 50.5696
cos( B ) = ( 33^2 + 37^2 - 7^2 ) / (2*33*37)
Cos(B) = 0.98649
B = 9.42877915274
cos( C ) = ( 33^2 + 7^2 - 37^2 ) / ( 2*33*7)
Cos(C) = -0.5
C = 120
( 4 )
given A = B = 35 , a = ?
A + B + C = 180
C = 180 - ( A + B)
C = 180 - 70
C = 110
a/sin(A) = c/sin(C)
a = c sin(A) / sin(C)
a =13 ( sin(35) / sin(110) )
a = 7.9350348269
( 5 )
cos (30 ) = 10 / x
x = 10 / cos(30)
x = 10 / ( sqrt(3) / 2)
x = 20 / sqrt(3)
cos( 150 ) =10 / x ===> adjacent side / hypotnuese
- sqrt(3) / 2 = 10 / x
x ==> 10 /( - sqrt(3) / 2 ) ==> 20 / - sqrt(3)

