Find without using a calculator the absolute extreme values
Find (without using a calculator) the absolute extreme values of the function on the given interval.
f(x) = x3 12x2 + 21x + 5 on [1, 2]
| absolute min | |
| absolute max |
Solution
given f(x) = x3 12x2 + 21x + 5
differentiate with respect to x.
f \'(x) = 3x3-1 12*2x2-1 + 21*1 + 0
f \'(x) = 3x2 24x + 21
f \'(x) = 3(x2 8x +7)
f \'(x) = 3(x 1)(x 7)
for crtical numbers , f \'(x)=0
=>3(x 1)(x 7)=0
=>x=1, x=7
only x=1 lies ininterval [1, 2]
f(-1) = (-1)3 12(-1)2 + 21(-1) + 5 =-29
f(1) = (1)3 12(1)2 + 21(1) + 5 =15
f(2) = (2)3 12(2)2 + 21(2) + 5 =7
absolute minimum is -29
absolute maximum is 15
![Find (without using a calculator) the absolute extreme values of the function on the given interval. f(x) = x3 12x2 + 21x + 5 on [1, 2] absolute min absolute ma Find (without using a calculator) the absolute extreme values of the function on the given interval. f(x) = x3 12x2 + 21x + 5 on [1, 2] absolute min absolute ma](/WebImages/58/find-without-using-a-calculator-the-absolute-extreme-values-1189876-1761651709-0.webp)