Suppose fx y z x2e4yz Compute nambla f Find the maximum rat

Suppose f(x. y, z) = x^2e^4yz. Compute nambla f. Find the maximum rate of change of f at p = (2,1,4) and and find a vector in the direction of this maximum increase.

Solution

f=x2e4yz

fx=2xe4yz,fy=x24ze4yz,fz=x24ye4yz

a)f=<2xe4yz,x24ze4yz,x24ye4yz>

b)(x,y,z)=(2,1,4)

f=<4e16,64e16,16e16> is direction of maximum increase

maximum rate of change =|f|=e16[42+642+162]

|f|=e16(4368)

|f|=66.1e16


Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site