Suppose fx y z x2e4yz Compute nambla f Find the maximum rat
Suppose f(x. y, z) = x^2e^4yz. Compute nambla f. Find the maximum rate of change of f at p = (2,1,4) and and find a vector in the direction of this maximum increase.
Solution
f=x2e4yz
fx=2xe4yz,fy=x24ze4yz,fz=x24ye4yz
a)f=<2xe4yz,x24ze4yz,x24ye4yz>
b)(x,y,z)=(2,1,4)
f=<4e16,64e16,16e16> is direction of maximum increase
maximum rate of change =|f|=e16[42+642+162]
|f|=e16(4368)
|f|=66.1e16