Use cylindrical coordinates to find the volume of the solid
Use cylindrical coordinates to find the volume of the solid. solid inside the sphere x^2 + y^2 + z^2 = 25 and above the upper nappe of the cone z^2 = x^2 + y^2
Solution
Solution:
In spherical coordinates, the equation of the sphere is
rho2=x2 +y2 +z2 =25
rho=5
Furthermore, the sphere and cone intersect when
(x2 + y2) + z2 = (z2) + z2 =25( upper nappe of the cone x2 +y2 =z2)
z=5/sqrt(2)
and, because z = cos( phi), it follows that
=(5/sqrt(2))(1/5) =cos (phi)
phi=pi/4
Consequently, you can use the integration order d dphi d,
where 0 3, 0 phi /4,
and 0 2.
The volume is v=integral v(dv)= integral(o to 2pi)integral(0 to pi/4)integral(0 to 5)(rho2 sin phi d dphi d)
=2pi integral(0to pi/4)(rho3/2)05[sin(phi )dphi)
=(125x2pi)/3(1-sqrt(2)/2)=(125x2pi)/3(2-sqrt(2))/2
=(125xpi)/3(2-sqrt(2)=130.8 (2-sqrt(2)
