Find the arclength of the curve rt4sqrt2te4te4t 0t1Solutionr
Find the arclength of the curve r(t)=4sqrt(2t),e^4t,e^4t, 0t1
Solution
r(t)=<4sqrt(2t),e^4t,e^4t>
r \'(t)=<4/sqrt(2t),4e^4t,-4e^4t>
|r \'(t)|=sqrt[(4/sqrt(2t))2+(4e4t)2+(-4e-4t)2]
|r \'(t)|=sqrt[(8/t)+(16e8t)+(16e-8t)]
arclength =integral[0 to 1] |r\'(t)| dt
=integral[0 to 1] sqrt[(8/t)+(16e8t)+(16e-8t)] dt
=55.67 units
arclength =55.67 units