Find the maximum and minimum values of fx y 5c y on the el
Find the maximum and minimum values of f(x, y) = 5c + y on the ellipse x^2 + 9y^2 = 1 maximum value: minimum value You have attempted this problem 5 times. Your overall recorded score is 0%. You have unlimited attempts remaining.
Solution
f(x,y)=5x+ y
let g(x,y)= x2+9y2-1
by the method of lagrange meltipliers
f = g
<5,1> = <2x ,18y>
5 =2x , 1 =18y
=5/(2x) ,=1/(18y)
5/(2x) =1/(18y)
2x =90y
x =45y
x2+9y2=1
(45y)2+9y2=1
=>2034y2=1
=>y2=1/2034
=> y =-1/2034 ,y =1/2034
x =45y
=> x =-45/2034 ,x =45/2034
(x,y)=(-45/2034 , -1/2034 ) ,(x,y)=(45/2034 ,1/2034 )
f(-45/2034 , -1/2034 ) =5(-45/2034) +( -1/2034 ) =-226/2034
f(45/2034 , 1/2034 ) =5(45/2034) +( 1/2034 ) =226/2034
maximum value =226/2034 =(226)/3
minimum value =-226/2034 =(-226)/3