11 Find x31nx dx4 Solution11 ddxx3lnx x31xlnx3x2 x23x2lnx x
11. Find (x31nx) dx4
Solution
11
d/dx(x^3lnx)
= x^3(1/x)+lnx(3x^2)
=x^2+3x^2(lnx)
=x^2(1+3lnx)
Differentiating
=x^2(3/x)+(1+3lnx)(2x)
=3x+(1+3lnx)2x
=3x+2x+6xlnx
=5x+6(xlnx)
Differentiating
=5+6(x(1/x)+lnx(1))
=5+6(1+lnx).
Differentiating
=0+6(0+1/x).
=6/x.
14.
Given that
xy^4-x^2y=x+3y
Differentiating on both sides
x(4y^3dy/dx)+y^4(1)-{x^2(dy/dx)+y(2x)}=1+3dy/dx.
dy/dx(4y^3x-x^2)+y^4-2xy=1+3.dy/dx
dy/dx(4xy^3-x^2-3)=2xy+1-y^4.
So dy/dx= (2xy+1-y^4)/(4xy^3-x^2-3).