Evaluate using Partial Fraction Decomposition 3x2 x 7 x2 3x
Solution
!5) We have given integration of ((3x2+x+7)/((x2+3)(x-2)))dx
using partial fraction decomposition on (3x2+x+7)/((x2+3)(x-2))=(Ax+B)/(x^2+3)+C/(x-2)
integration of ((3x2+x+7)/((x2+3)(x-2)))dx=integration of ((Ax+B)/(x^2+3)+C/(x-2) )dx --(1)
(3x2+x+7)/((x2+3)(x-2))=[Ax^2+Bx-Ax-2B+Cx^2+3C]/((x^2+3)(x-2))
(3x2+x+7)/((x2+3)(x-2))=[(A+C)x^2+(B-A)x-2B+3C]/((x^2+3)(x-2))
set numerators equal both sides
(3x2+x+7)=(A+C)x^2+(B-A)x-2B+3C
setting the x^2 coefficient , x coefficient and constant terms on both sides
A+C=3
(B-A)=1
-2B+3C=7
A+C+B-A=3+1=4
B+C=4
from 2*(B+C=4)+(-2B+3C=7)
(2B+2C=8)+(-2B+3C=7)
5C=15
C=3
plug C=3 into A+C=3
A=3-C=3-3=0
plug A=0 into B-A=1
B=1+A=1+0=1
so we have A=0,B=1 and C=3
substitute A=0,B=1 and C=3 into equation (1)
integration of ((3x2+x+7)/((x2+3)(x-2)))dx=integration of ((0*x+1)/(x^2+3)+3/(x-2) )dx
=integration of (1/(x^2+3)+3/(x-2) )dx
=integration of (1/(x^2+3))dx+integration of (3/(x-2))dx
=integration of (1/(3*(x^2/3+1)))dx+integration of (3/(x-2))dx
substitute u=x/sqrt(3) and v=x-2
du/dx=1/sqrt(3) and dv/dx=1 implies dx=dv
dx=sqrt(3)*du and dx=dv
=integration of (sqrt(3)/(3*(u^2+1)))du+integration of (3/(v))dv
=sqrt(3)/3 *integration of (1/(u^2+1))du+3*ln(|v|)+C
=1/sqrt(3)*[arctan(u)]+3*ln(|v|)+C since sqrt(3)/3=sqrt(3)/(sqrt(3)*sqrt(3))=1/sqrt(3)
substitute back u=x/sqrt(3) and v=x-2
=1/sqrt(3)*[arctan(x/sqrt(3))]+3*ln(|x-2|)+C
=[arctan(x/sqrt(3))]/sqrt(3)+3*ln(|x-2|)+C
integration of ((3x2+x+7)/((x2+3)(x-2)))dx=[arctan(x/sqrt(3))]/sqrt(3)+3*ln(|x-2|)+C