1 The number of customers per week at each store of a superm

1. The number of customers per week at each store of a supermarket chain has a population mean of 5000 and a standard deviation of 500. Suppose this population has a normal distribution. If a random sample of 64 stores is selected.
[5] a. Find the mean and the standard deviation of the sample mean X . What is the sampling distribution of the sample mean?

[5] b. Find the probability that the sample mean will be between 4,980 and 5,075 customers per week?
[5] c. Find the probability that the sample mean deviates from the population mean by less than 30.

Solution

A)

By central limit theorem:

It is normally distributed, with the same mean, u(X) = 5000.

It has a standard deviation of

sigma(X) = sigma/sqrt(n) = 500/sqrt(64) = 62.5 [ANSWER]

*******************

b)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    4980      
x2 = upper bound =    5075      
u = mean =    5000      
          
s = standard deviation =    62.5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.32      
z2 = upper z score = (x2 - u) / s =    1.2      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.374484165      
P(z < z2) =    0.88493033      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.510446165   [ANSWER]

*********************

c)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound = 5000-30 =   4970      
x2 = upper bound = 5000+30 =    5030      
u = mean =    5000      
          
s = standard deviation =    62.5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.48      
z2 = upper z score = (x2 - u) / s =    0.48      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.315613697      
P(z < z2) =    0.684386303      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.368772607   [ANSWER]  
  

1. The number of customers per week at each store of a supermarket chain has a population mean of 5000 and a standard deviation of 500. Suppose this population

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site