Let sin s 13 with s in quadrant ii and let cos t 34 with t
Let sin s = 1/3, with s in quadrant ii and let cos t =3/4, with t in quadaratn i. Find each of the following:
a) cos (s+t)
b) tan (s-t)
c) cos 2s
d) sin t/2
Solution
sin s = 1/3, cos t = 3/4
cos s = +- ( 1- sin2 s)1/2
= +- ( 1- ( 1/3)2)1/2
cos s = - 81/2 / 3 ( s - II quadrant, in II quad. cos s = -ve)
sin t = +- ( 1- cos2 t)1/2
= + - ( 1- 9/16) 1/2
= + 71/2 / 4 ( sin t = +ve in I quadrant)
cos (s+t) = cos s*cos t - sin s*sin t
= ( - 81/2 /3)* ( 3/4) - (1/3)* (71/2 /4)
= - 0.927
-----------------------------------------------------------------------
tan( s- t) = sin ( s-t) / cos ( s-t)
= sin s* cos t - cos s*sin t / cos s *cos t + sin s *sint
on putting values = - 1.79
-----------------------------------------------------------------
cos 2s = 2*cos2s - 1
= 2* ( - 81/2 / 3) - 1
= 0.777
---------------------------------
sin t/2 = ?
from cos t = 1-2*sin2 t/2
sin2 t/2 = 1- cos t/2
= 1- (3/4) / 2
= 1/8
sin t/2 = 1/81/2 ( since t is in I quadrant)
