Let sin s 13 with s in quadrant ii and let cos t 34 with t

Let sin s = 1/3, with s in quadrant ii and let cos t =3/4, with t in quadaratn i. Find each of the following:

a) cos (s+t)

b) tan (s-t)
c) cos 2s

d) sin t/2

Solution

sin s = 1/3, cos t = 3/4

cos s = +- ( 1- sin2 s)1/2

= +- ( 1- ( 1/3)2)1/2

cos s = - 81/2 / 3 ( s - II quadrant, in II quad. cos s = -ve)

sin t = +- ( 1- cos2 t)1/2

= + - ( 1- 9/16) 1/2

= + 71/2 / 4 ( sin t = +ve in I quadrant)

cos (s+t) = cos s*cos t - sin s*sin t

= ( - 81/2 /3)* ( 3/4) - (1/3)* (71/2 /4)

= - 0.927

-----------------------------------------------------------------------

tan( s- t) = sin ( s-t) / cos ( s-t)

= sin s* cos t - cos s*sin t / cos s *cos t + sin s *sint

on putting values = - 1.79

-----------------------------------------------------------------

cos 2s = 2*cos2s - 1

= 2* ( - 81/2 / 3) - 1

= 0.777

---------------------------------

sin t/2 = ?

from cos t = 1-2*sin2 t/2

sin2 t/2 = 1- cos t/2

= 1- (3/4) / 2

= 1/8

sin t/2 = 1/81/2   ( since t is in I quadrant)

Let sin s = 1/3, with s in quadrant ii and let cos t =3/4, with t in quadaratn i. Find each of the following: a) cos (s+t) b) tan (s-t) c) cos 2s d) sin t/2Solu

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site