Write the dual for each of the following primal problems Max
Solution
c) solving by simplex method:
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
2 1 1 0 0 0 0 0 0 5
3 -1 0 1 0 0 0 0 0 6
1 0 0 0 -1 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0
2 1 0 0 0 0 -1 0 0 5
3 -1 0 0 0 0 0 -1 0 6
-1 -1 0 0 0 0 0 0 1 0
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
2 1 1 0 0 0 0 0 0 5
3 -1 0 1 0 0 0 0 0 6
-1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0
2 1 0 0 0 0 -1 0 0 5
3 -1 0 0 0 0 0 -1 0 6
-1 -1 0 0 0 0 0 0 1 0
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
2 1 1 0 0 0 0 0 0 5
3 -1 0 1 0 0 0 0 0 6
-1 0 0 0 1 0 0 0 0 0
0 -1 0 0 0 1 0 0 0 0
2 1 0 0 0 0 -1 0 0 5
3 -1 0 0 0 0 0 -1 0 6
-1 -1 0 0 0 0 0 0 1 0
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
0 1.7 1 0 0 0 0 0.67 0 1
0 0 0 1 0 0 0 1 0 0
0 -0.33 0 0 1 0 0 -0.33 0 2
0 -1 0 0 0 1 0 0 0 0
0 1.7 0 0 0 0 -1 0.67 0 1
1 -0.33 0 0 0 0 0 -0.33 0 2
0 -1.3 0 0 0 0 0 -0.33 1 2
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 -0.2 -0.2 0 2.2
0 0 0 0 0 1 -0.6 0.4 0 0.6
0 1 0 0 0 0 -0.6 0.4 0 0.6
1 0 0 0 0 0 -0.2 -0.2 0 2.2
0 0 0 0 0 0 -0.8 0.2 1 2.8
x1 x2 s1 s2 s3 s4 s5 s6 z
------------------------------------------------------------------------
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0.2 0 1 0 0 -0.2 0 2.2
0 0 0.6 0 0 1 0 0.4 0 0.6
0 1 0.6 0 0 0 0 0.4 0 0.6
1 0 0.2 0 0 0 0 -0.2 0 2.2
0 0 0.8 0 0 0 0 0.2 1 2.8
hence Optimal Solution: z = 2.8; x1 = 2.2, x2 = 0.6
