Find all exact values at x in the interval 0 2pi that satisf
Find all exact values at x in the interval [0, 2pi] that satisfy each equation. 2 sin (x) -1 = 0 2 cos (3pi) + Squareroot2 = 0.
Solution
a) 2sin(x) - 1 = 0
==> 2sinx = 1
==> sinx = 1/2
==> x = /6 , 5/6 (since sine function is positive in both first and second quadrants)
b) 2cos(3x) + 2 = 0
==> 2cos(3x) = -2
==> cos(3x) = - (2)/2
==> cos(3x) = -1/2
==> 3x = 3/4 , 5/4 , 11/4 , 13/4 , 19/4 , 21/4
==> x = /4 , 5/12 , 11/12 , 13/12 , 19/12 , 21/12
Hence x = /4 , 5/12 , 11/12 , 13/12 , 19/12 , 7/4
![Find all exact values at x in the interval [0, 2pi] that satisfy each equation. 2 sin (x) -1 = 0 2 cos (3pi) + Squareroot2 = 0.Solutiona) 2sin(x) - 1 = 0 ==> Find all exact values at x in the interval [0, 2pi] that satisfy each equation. 2 sin (x) -1 = 0 2 cos (3pi) + Squareroot2 = 0.Solutiona) 2sin(x) - 1 = 0 ==>](/WebImages/2/find-all-exact-values-at-x-in-the-interval-0-2pi-that-satisf-964482-1761498697-0.webp)