Find a degree 3 Taylor polynomial approximation to exyysinx
Find a degree 3 Taylor polynomial approximation to e^xy\'\'+y=sin(x) ; y(0)=1, y\'(0)=1
Solution
f = e^(xy\"+y) sin(x)-----> f(0,0) = 1
we can difertiate both sides,then
d (e^(x,y\"+y) )=d(sinx)
exy2.d(xy^2)+y\'=cosx
exy^2(y^2+x.2y.y\')+y\'=cosx
y^2exy^2+2xy exy^2.y\'+y\'=cosx
-y^2exy^2 +y\'=-y^2exy^2
==>(2xy exy^2.+1)y\'=cosx-y^2 e^xy^2
therfore y\'=cosx-y^2 e^xy^2/2xy e^xy^2+1
