Find a degree 3 Taylor polynomial approximation to exyysinx

Find a degree 3 Taylor polynomial approximation to e^xy\'\'+y=sin(x) ; y(0)=1, y\'(0)=1

Solution

f = e^(xy\"+y) sin(x)-----> f(0,0) = 1

we can difertiate both sides,then
d (e^(x,y\"+y) )=d(sinx)

exy2.d(xy^2)+y\'=cosx

exy^2(y^2+x.2y.y\')+y\'=cosx

y^2exy^2+2xy exy^2.y\'+y\'=cosx

-y^2exy^2 +y\'=-y^2exy^2

==>(2xy exy^2.+1)y\'=cosx-y^2 e^xy^2

therfore y\'=cosx-y^2 e^xy^2/2xy e^xy^2+1

Find a degree 3 Taylor polynomial approximation to e^xy\'\'+y=sin(x) ; y(0)=1, y\'(0)=1Solutionf = e^(xy\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site